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SUMMflARY

)A quasi-one-dimensional theory is developed for tbh flow in an
air-air ejector with sonic injection. It is based on the concept of "general"
or "two stream" choking and deals with the constant area compressible mixing
of two streamsof the same gas with constant specific heats. Some numerical
solutions are presented for the case of an air-air ejector. The effects of
the total pressure ratio and total enthalpy ratio between the injected streams
are determined for various geometries. The maximum flow or choked solutions
are also investigated. The theory is extended to cover the cases of
supersonic injection and the mixing of two different gases. A few numerical
results for supersonic injection are presented.
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Nomenclature

A cross-sectional area

f momentum function of wij

H total enthalpy

h total enthalpy ratio -primary/secondary

h3  total enthalpy ratio mixedsecondary

K energy ratio M2 (Y - 1)/2

M Mach number

m mass flow ratio secondary/primary

Pb back pressure

Pt total pressure

p static pressure

v velocity

y mass flow density function of wij
z area ratio All/A 3

z area ratio A12/A3

ZI ~area ratioA123z"l area ratio A1 2/A22

Y ratio of specific heats Cp/Cv

7 total pressure ratio Pt11/Pt2

n total pressure ratio Pt1IPt2

'Al total pressure ratio PtVPt 2

v ij isentropic pressure ratio p/Pt for the ith stream at
the jth plane

p density

Suffix

I refers to the primary before mixing

2 refers to the secondary befdre mixing

3 refers to the mixed stream at the crosz-sectional plane 3

b refers to the condition into which the ejector exhausts

ij refers to the ith stream at the jth plane
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1. Introduction

The effects that occur when two gas streams are allowed to mix
dynamically in a closed channel have been recognised and made use of for some
time. Examples of applicatiaus include such deoices as ejectors, jet pumps,
thrust augmentors, etc. The design and optimisation of thesemachihes
requires a theory and a method of analysis which are reasonably accurate,
and yet, not so complex that they become impossible to apply. Ideally a
theory that would supply an explicit algebraic solution would serve best.
To date, no such theory has emerged and it is generally recognised that all
solutions have to be obtained either numerically or graphically. When using
a numerical method for optimisation it must be possible to make surveys of
the effects of the various controlling parameters on the solution. When the
analysis is very complex this procedure becomes very tedious if not impossible.

The problem is one of finding a suitable compromise between theories
that describe the flow in great detail for a given situation and that are highly
complex,'and theories that are simple but do not explain all the effects 'hat
are found to take place. The approaches made so far fall into two main groups,
one on either side of the optimum. Firstly there are those that deal with
the actual mechanism of the mixing process. These methods are similar to
those used for free jeti, and often involve a boundary layer type of analysLs
of the mixed region between the two streams and a two-dimensional description
of the streams themselves. This approach is mainly used in low speed wo7.k or
where compressibility effects are not great. The analysis is extremely
complicated and the solution obtaine r.ot only corresponds to a unique set
of control parameters but is also heavily dependent upon the actual geometry
of the situation.

In their simplest form the methods in the second group reduce to
satisfying the one-dimensional equations for conservation of mass, momentum
and energy between the two steams just prior to mixing and the combined stream
when it is entirely mixed. Both streams are assumed to consist of the same
perfect gas with constant specific heats. These solutions do not take into
account the effects of viscosity or the mechanism of the mixing process. As
might be expected, such theories do not give very satisfactory results in
predicting experimental flows or in the explanation of the effects observed.
The analysis becomes especially simplified in two special cases; mixing at
constant pressure and mixing at constant cross-sectional area. In both cases
the simplification is due to the wall pressure term in the momentum equation
becoming trivial.

The comparative simplicity of the one-dimensional approach makes the
second group of methods preferable for use in an overall study of ejector flow
processes. Several improvements have been made to the basic theory to try to
rectify the short comings mentioned above. Most of these improvements, in
dealing with mixing at constant cross-sectional area, divide the total solution
into separate regimes. Each regime represents a particular flow pattern and
is described by its own theory and its own set of relations. The main
distinguishing factor between the regimes is the behaviour of the primary stream
on entry to the mixing duet. There is a slight difference in the division of
the solution into regimes between the cases of sonic and supersonic injection.

In sonic ejectors, that is those with convergent injection nozzles,
four major flow regimes appear. Firstly, if all the pressure differences in
the system are small, the flows will be subsonic ana both streams will enter
the mixinC zone at the same static pressure. This is known as the subsonic

regime./



IP

regime. If the pressure against which the ejector exhausts is lowered, it
increases the mass flow rates, the primary stream becomes choked at the throat
of the injection nozzle and enters the duct in an underexpanded state. When
the primary is underexpanded, but the flow is still dependent on -the exhaust
pressure, the flow is then said to be in the mixed regime. As the exhaust
pressure is lowered still further there occurs a limit beyond which it no longer
has any effect upon the flow. When this state is reached the ejector is said
to be working in the supersonic regime. This is the solution of maximum mass
flow for fixed upstream conditions. If, also, the total pressure ratio between
the two streams is large or the injection area of the secondary stream is small,
the expansion of tnhe primary stream may tend to cut off the secondary stream
altogether. Solutions in which this effect is dominant are said to be in the
base pressure regime.

Ejectors in which the primary stream enters the mixing duct through
a convergent-divergent nozzle are called supersonic ejectors. The naming of
the flow regimes that occur in these is due to Fabri. The solution, which is
independent of the downstream pressure, is split up into three sub-groups
determintd by the state of the primary stream on the injection to the mixingIzone. Where the primary is underexpanded, the regime retains the name of the
supersonic regime. When the static pressures of the two streams are equal on
entry and the secondary stream is choked, the flow is in what is termed the
saturated conditiun. If the primary stream is overexpanded the secondary will
again be choked and the flow is in the supersaturated supersonic regime. The
mixed regime, as before, refers to that part of the solution in which the primary
stream is choked and the flow is dependent on the exhaust pressure. As might
be expected the mixed regime has three sub-divisions, one corresponding to each
of the supersonic regimes above. These are not usually given specific names.

The main failures of the simple one-dimensional approach are in its
predictions of the solutions in the supersonic regime and its predictions of
the base prenssure solutions. The improved theories that try to rectify these
faults, all deal with the region of the flow at the upstream end of the mixing
duct where the two streams first come into contact. The main differences
between the various theories lie in the mechanisms whereby they limit the
secondary mass flow.

In dealing with the supersonic solutions, Fabril considered both
streams to behave isentropically during the primary expansion. He applied the
conditions of conservation of mass and momentum acrops the expansion which was
considered to continue until the secondary stream became choked. This theory

seems to have had some- reasonable success with certain ejector configurations,
but does not prove satisfactory over the whole supersonic regime. It has been

found that no one-.dimensional theory is effective in predicting the base pressure
solutions. This is not surprising since it is here that the viscous effects
between the two streams become d.minant and no one-dimensional theory takes
these into account. To deal with the base pressure solutions, Messrs. Chow

and Addi2 developed a quasi one-dimensional theory which treated the primary
expansion by the method of characteristics using a one-dimensional treatment
of t:i? zsct.n,-ry stra:, a- a boundary condition. A preliminary inviscid
solution is obtained using similar assumptions to Fabri,, Then, a boundary
layer type of analysis is made of the viscous region along the interstream
boundary thus obtained. This is superimposed on the inviscid flow and the
whole flow ic adjusted accordingly. This approach was found to give gocd
results ani gave better predictions of experimental flows than that of Fabri.
It suffers, however, from the fact that the calculations involved to predict
just a singleo flow are very complex and take quite some time, even with the use
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of a high speed digital computer. Being a two-dimensional method, It is also
heavily dependent in geometry and hence, as a method of surveying the total
solution, it is of limited use.

Another approach to the problem of describing the expansion of the
primary stream one-dimensionally was introduced by Pearson, Holliday and Smith 3

in a paper on a theory for ejector nozzles with short shrouds. Here the
primary stream is considered to expand polytrop-.cally until the exit of the
short shroud, where it emerges at the same static pressure as the secondary.
The secondary stream is treated isentropically and the effects of viscosity
and mixing between the two streams are ignored. In the supersonic regime the
mass flow in the secondary stream is limited by an interstream choking effect.
This takes place in the exit plane of the shroud or mixing duct while the
secondary is still subsonic.

It is the intention of this paper to put forward and examine a theory
and method of analysis which will explain with reasonable accuracy the effects
that occur when two streams of the same perfect gas mix dynamically at constant
cross-sectional area. The streams are considered to have different total
enthalpies as well as different total pressures. The theory is of a similar
nature to that of Pearson, except that it deals with ejectors with long shrouds
or mixing chambers where the flows have time to become completely mixed. The
limits within which the solutions are applicable are %ketched and discussed.
Using the resulting method of analysis, a numerical survey of the problem is
made for sonic and subsonic injection over a wide range of conditions. It is
of academic interest to note that there exist in the mixed regime some supersonic
alternative solutions for which there is an overall gain in total pressure without
infringing on the second law of thermodynamics. The question of the physical
existence of such solutions is also discussed.

2. Theory

2.1 The theoretical system and assumptions

The theory is developed for the case of sonic injection, but, as it
will be shown later, it may be easily extended to the supirsonic case. The
basic approach to the problem was to take a theoretical system, build up a
mathematical model for it and then find a method of anal,1sis that would allow
an extensive survey of its performance. The system that was chosen is shown
in Tig. I. It consists of two reservoirs of a gas exhausting via a common
channel into a third reservoir or the atmosphere. The mixinG process between
the two stream3 takes place in a duct of cnistant cross-sectional area. The
two exhausting reservoirs are connected to uhis duct by two convergent noz:.les
whose combined throat area is equal to the cross-sectional area of the duct.
Hence using the notation of Fig. 1.

A1  + A2  = A1 2 3
For a one-dimensional treatment the geometry of the flco may thus be expressed
in a single parameter such as z (= A1 / 3).

For this system the controllable rE,-a-1ters may be taken as: the
geometry, the total pressures and the total entnalpies of the gases in the two
reservoirs, and the back pressure into which 'he mixing tube exhausts. The
analysis for the problem in the general state is very complex, and in order to
develop a. mathemntical model with a simple analysis the following assumptions
are made: the entire prccess is treated one-dimencicnally. The same perfect
gas -with con-tant specific heats i- used th- .uGhout, The boundary layer and
frictional effects .t the wvalls are assumed t' be negliLible. The length of
the mixini- tube is assumed to b, such that the flo.: is completely mixed t the
exit.

Thec e/



These assumptions reduce the problem to one of four basic parameters:
', the total pressure ratio and h, the total enthalpy ratio between the two
exhausting reservoirs, z the geometric parameter, and pb' the back pressure.

The reservoir with the higher total pressure and the stream issuing from it are
designated the primary, and the other reservoir and stream the secondary.
In the range of conditions investigated, the primary total enthalpy is always
greater than that of the secondary.

For the purposes of analysis the flow is divided into three sections
as shown in Fig. 2b. The first section covers the flows from the reservoirs
to the plane of entry to the mixing tube. The second covers the region in
which the mean pressures of the two streams are not equal, and the third from
the plane of equal pressures until the mixing is complete.

In the first region the streams are assumed to flow out of the reservoirs
isentropically and arrive at the entrance to the mixing tube having suffered no
losses. These flows may be considered to be dependent upon the static pressures
at the plane of entry.

If both streams enter the mixing duct subsonically it is assumed that
the static pressures of the two streams are equal at the plane of entry. In
such cases the secondary region mentioned above vanishes and the flow goes straight
onto the mixing process. If, however, the primary stream becomes choked at
the plane of entry, the static pressures at this plane need not be equal. There
would then follow a process in which the two mean pressures would be equalised.
This is the second region depicted in Fig. 2b, and it ends at the plane where
the static pressure of the combined stream first becomes uniform. The process
consists of a rapid expansion of the primary stream, during which the mean
pressures of both streams fall, though that of the secondary only slightly.
Due to the rapidity of the process it is assumed that there is no mass or
uner-,r transfer between the two streams. Momentum is transferred but only
by the action of the pressure forces on the boundary between the two streams.
Since the mixing duct is parallel sided this momentum transfer must be equal
and opposite. The secondary stream remains subsonic during this process and
is assumed to be described by the one-dimensional isentropic area-velocity
relation. The primary expansion on the other hand is assumed to be irreversible
and the solution for the state of the stream at the end of the expansion may
'be determined by simultaneously satisfying the following conditions:-

that the mean static pressures of the two streams are equal
at the end of the process,

that the crosc-sectional area of the mixing duct is constant,

that the momentum transfer during the process is equal and
opposite,

that both mass and energy are conserved within the stream.

Aftor the two mean pressures have become equal there follows a region
of mixing at constant area by the end of which the static pressure across the
cross-section is assumed to have become uniform. This is the third region of
Fi6. 2, and it is analysed by simply equating the influx of mass, momentum and
energy to the respective effluxes within the combined stream when it is entirely
mixed. The analysis and the relevant equations for each section will now be
developed.

2.2/



-7-

2.2. Theo

Consider the system as shown in Fig. 2. The parameters which must
be given definite values in order to specify a unique cordition of flow are:
the total pressures and enthalpies of the exhausting reservoirs, the ratio
of the throat areas of the two injection nozzles and the back pressure into
which the mixing tube exhausts. Making use of these the problem may be
uniquely specified in terms of four non-dimensional parameters:-

Primary total pressure/secondary total pressure,
Primary total enthalpy/secondary total enthalpy, h
Primary injection area/area of mixing tube, z
The back pressure/secondary total pressure, PVPt 2

These four parameters will hereafter be referred to as the control
parameters. Their theoretical possible ranges and the ranges within which
their effects are investigated are given in the table below.

Parameter Theoretical range Range investigated

I to infinity 1.1 to 6.0
z 0 to 1.0 0.01 to 0.9
h 0 to infinity 1.0 to 5.0

Given the values of these parameters the equations describing the flow
should become soluble. These equations will now be derived.

In the first region the two streams flow isentropically from their
respective reservoirs to the entrance of the mixing tube. These flows are
governed by the static pressure at this plane, which, it was mentioned above,
may or may not be equal. Using the notation defined above and referring to
Fig. 2, the equation for the case of equal pressures may be written,

Pi I = P21

or 11P ti 11 Pt21

where wij = /Ptij for the ith stream and jth pJane.

This may be written,

" ; 1 = ...

In the cases where the pressures are unequal, the primary stream is
choked and its static pressure at plane I is assumed to be critical. Hence

= (2/(y + 1)) Y/(A Y -

where y is the ratio of the specific heats Cp/Cv.

Since/
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11 Since the flows are is, ntropic in this region their equations of
motion maybe written,

't1o = 'l"" )

and Pt20 : t21 " (3)

The flows are thus described either by Eqns. (I), (2) and (3) or by
Eqns. (ia), (2) and (3). The problem is at this stage indeterminate, for the
solution is also dependent upon the conditions downstream, and it is these
conditions that will determine the value of the pressure at the entrance to
the mixing tube, that is w21 . Since it has not been found possible to obtain

an expression for ;21 in terms of the downstream conditions, values are to be

assumed for ;21 and the downstream conditions to be determined for these

values.

In cases where the primary stream is choked at plane I and the static
pressures are not equal, an expression which relates the states of the two
streams at plane 2 may bij derived. Consider the flow in region 2. The
secondary stream is subsonic at plane I and remains so during the expansion.
Hence it will be considered to behave isentropically and obey the well known
area-pressure relation,

A (I - ;(Y - 1)/y).l/y

A* ((y - 1)/2)t(2/(y + I))Y + I

Using this relation and introducing the mass flow density function

y, in place of the expression

the equation describin& the isentropic contraction of the secondary stream

becomes

i-z' Y21

-z Y22

For the irreversible expansion of the primary: continuity states that

Aii P11  v 1  A12 P1 2  v1 2

which may be combined with the enera' equation

Ii /
111 I
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H11 =H2 H..(6)

and rewritten in the form

zPi1 y 1  = ' P 2 Y1 2  (6a)

For the static pressures to be equal at plane 2,

P12 = P22 ..()

or P t 2 12 = Pt22 w22 ...(7a)

Since the two streams are contained in a parallel sided duct, the
momentum exchange between them must be equal and opposite, and hence the
momentum fluxes across planes I Pnd 2 must also be equal.

Al (P1 1 +P 1 721") + A21  P= A 2 (P1 2 P12V12) +2A22 (P22+v22

...*(8)

Using the substitution fij : ij (I + 2Y ( ij - - 1)/(y - 1)) for

the momentum flow function, and the others mentioned above, this equation may be
written,

zP f (-' f =' f

tIl 11 + z Pt21 f21 =  z' Pts2 f12 + (I- z') Pt 22  22

..(Sa)

Since the secondary is isentropic Pt21 = Pt22 p t2 say. Further, from

Eqn. (6),

ti2 1 t I o.(6b)
P'tl 2 = - Ptl ...

Substituting this into Eqn. (8a),

z 'Af + 01-Z) f2 1  =z( 1 / ) + (I f-z)C2  .(b
11 2 l22

and into Eqn. (7a),

z Y . = '22 .... (7b)
zo Y2

Now/
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Now from Eqn. (4),

I - - z) Y2 /Y22 "

Substituting into Eqn. (8b) for z',

z In z X fl 2 f 22
f1 1  + f = - Y i"-- + Y2. 2 ...(80)

- z z Y 2 Y22

and into (7b),

..(7c)
z ' yi1 w12  yl 2 22 1 z) y N. /)Y2 2 ) .(c

Eqns. (7c) and (8c) are two oquations relating the variables w21,

12 and w22 or functions thereof. Eliminating w21 there emerges a

relation connecting w12 and w22, in fact connecting the states of the two

streams at the plane of equal pressures.

In both cases, when the primary is choked and when it is not, from
consideration of the upstream conditions alone the solution is indeterminate at
plane 2. For a given set of stagnation conditions and a given geometry there
will then exist a definite relation between the states of the two streams at
plane 2. There will thus be a series of solutions corresponding to different
downstream conditions. So by assuming values for w21  at the start of the

actual mixing it should be possible to find the corresponding values of back
pressure at the end of mixing. For a fixed value of w 21 the state of the

secondary stream in region I is fixed and the state of the primary stream at
the equivalent value of w1I may be determined. If this state is found to be

subsonic it is adopted and both streama enter the mixing tube subsonically and
at the same static pressure. Thus the expansion of region 2 does not exist
and planes I and 2 of Fig. 2b are coincident giving the situation depicted in
Fig. 2a. If, on the other hand, it is found that the primary stream would be
supersonic at the equivalent value of w11 ' it is assumed that it has become

choked and is in the sonic state at plane i. Thereafter the static pressure!
are equalised by the expansion process of region 2. Having assumed a value
for ;21 the values of w12 and w22 may be found from Eqns. (7c) and (8c).

Hence the states of the two streams at plane 2. The degree of irreversibility
in the primary expansion may be determined by finding the loss in total pressure,
which in turn may be found from Eqn. (6b).

P til t12 Y11
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After plane 2 the streams are allowed to mix. The static pressure
is assumed to be uniform across both the plane at the end of the mixing tube,
plane 3, and the plane at the start of the mixing process, plane 2. Since the
mixing takes place in a parallel sided duct, all that is necessary in a one-
dimensional treatment is to satisfy the conditions of conservation of. mass,
momentum and energy between these planes assuming that they are far enough apart
for the properties of the mixed stream to have become uniform across the cross-
section. These conditions give rise to the following equations:-

Continuity,

A212 P12 vl2  + A22 P22 v 2 2  A3  3 v3 ...(9)

Energy,

A2 P12 v1 2 12 A2 2 P2 2 v2 2 H2 2  
= A3 P3 3 3

Momentum, 2 ) + 2A
A12 P12 P 12 2 A2 2 (P 22 +P 2 2  = A3 (P* 3 v) ...(1

Using the substitutions for ;.., y.. and fi given above together with the

following substitutions

h H 3/H21, 7' = Pt21/Pt2, " = Pt3/Pt2 and z" = A2/A22h3

Eqns. (9), (10) and (11) may be written:-

I I

Y22 + z" 't' y1 2 h 2 = + Z") All y33 h3
2  ,..(9a)

1 1

Y22 ' z it y12 h = + z") " y33 h3
2  ..(10a)

f22 + " ni f1 2  = (1 + ,") n" f 33 ...(a)

Given that all the quantities on the left-hand sides of these equations
are known2 there are three equations and three unknowns. The unknowns are n"
h and w the quantities y.. and f_ being simple functions of w3 3 .
3' and ) 33' 33

Eliminating n" and h3 between the Eqns. (;a), (10a) and (1Ia), there emerges

a relation which gives a quadratic solution for the state of the mixed stream.
In general one root yields a super3oanic solution and the other a subsonic solution.
Once values for w33 have been found the other properties of the mixed stream

may be determined by substitution back into Eqns. (9a) to (la).

2 z it h 2 2z,,2  ,2 2
(y f) 2  = Y2 2  2)2y 2 2 Y12 + Yz 2

(f22 + z" 7t' 12

Considering/
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Con3idering the flow as a whole we now have a set of equations that

will, for given geometry and stagnation conditions, supply a series of quadratic
solutions for the state of the mixed flow corresponding to a set of assumed
values of the secondary injection pressure p21"

2.3 Method of analysis

Due to the complexity of the above system of equations it was not foumd
possible to obtain an explicit algebraic solution to them. Thereforc a numerical
method was used to make a survey of the effects of the control variables on the
solution. This method, developed for use with a high speed digital computer,
will now be described.

For a given set of control variables it was shown above that it is
possible to find the states of the mixed stream corresponding to assumed values
of the secondary injection pressure. To obtain this series of solutions the
following process is carried out.

A high value for the secondary injection pressure is selected, usually
just below the secondary total pressure. This gives a small mass flow in the
secondary stream. It is then checked whether or not the primary stream is
choked at this pressure. If it is, the procedure outlined in the next paragraph
is carried out straight away. If, on the other hand, it is not, the following
procedure is adopted. The two injection pressures are assumed to be equal and
the chosen pressure P21 , is used to define the states of both streams at plane 1.

This is the subsonic regime depicted in Fig. 2a, where both streams enter the
mixing tube subsonically. The quadratic for the state of the mixed stream is
then solved yielding two solutions, a subsonic one and another one which is,
in general, supersonic. In the general solution the Mach number of the supersonic
solution increases as the value of the secondary injection pressure is raised.
In certain cases the supersonic solution possesses a singular point over which
the Mach number passes from plus infinity to minus infinity as P2 1 is increased.

The supersonic solution is assumed not to exist for solutions with values of
secondary injection pressure above that at which the singularity occurs. For
those solutions that do exist, the following properties of the mixed flow were
computed;

the Mach number,
the total pressure,
the total enthalpy,
the mass flow ratio, secondary/primary,
the static pressure,

and the critical area ratio.

The above process is repeated for decreasing values of p21, the

secondary injection pressure, until the primary stream becomes choked in plane i.
At this stage the static pressures of the two streams are no longer equal on
injection and the primary stream is made to expand as shown in Fig. 2b. This
process is described by~Eqns. (70) and (8c) above. Using the current value
of P21, and hence of w2 1, these equations are solved by an iterative process

to find the states of the two streams at the end of the expansion. This consists
of choosin& successive values for w22 in such a way that the two values of ;12)

found from Eqns. (7c) and (8c), tend to converge and coincide. When they are
sufficiently close to coinciding the process is stopped and the current values of
w 22and w 2 used to define the states of the streams at plane.2. The mixing
quadratic, qn, (12), is then solved as before. The process is then repeated for

increasingly/
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increasingly smaller values of the secondarj injection pressure p2,. Because

the primary stream is choked at plane I, its mass flow is now fixed and the
reduction of p2i only affects the secondary mass flow. As the chosen values

of p2, fall the two solutions of the mixing ,quadratic gradually converge towards

the sonic condition. Within the range of solutions investigated, it is found
that there are two mechanisms that prevent the secondary injection pressure
falling indefinitely and that limit the mass flow that can be passed through
the system. Firstly, the two roots of the quadratic may coincide or become
imaginary, in which case it is assumed that the mixed flow has becane choked
at the exit of the mixing duct. Alternatiyely, the two values of ;12 in the

iterative procedure for the primary expansion may be found to converge and then
diverge, without ever becoming equal. In such cases the two streams could never
reach a state of equal pressures and it is assumed that such a situation would
be prevented from taking place by the two stream choking effect occurring wh6n
the twn 7alues of w12 are only just able to coincide. These phenomena are
discussed further below. When either of these limiting effects occur, the
process of taking successively lower values of p21 is stopped, and the solution

for that particular set of control variables considered complete.

3. Solutions Obtained Using the Theory Presented

3.1 A full examination of a few typical solutions

To illustrate the forms that the general solution may take in the various
flow regimes, some specific examples exhibiting each of the choking effects will
be discussed. The solutions chosen for this purpose are those corresponding to
the following set of control variables:-

Injection nozzle area ratio A1/A3 or z = 0.5

Total pressure ratio % = 1 .7
Total enthalpy ratio h = 1.0, 1.5, 2.0, 3.0. 4.0.

The solutions are presented in terms of the static pressure after mixing,
P3, hereafter called the exhaust pressure and the secondary injection pressure, p 21.

For the purposes of plotting these solutions in a non-dimensional form all the
pressures are nci'alized with respect to the secondary total pressure. As may
be seen on inspecting Fig. 6, each solution corrcsponding to a fixed set of
parameters is double valued with respect to the injection pressure, P21. The

upper branches are subsonic solutions and the lower ones are supersonic solutions.
The minima in P21 represent the choked solutions and they are also those of

maximum mass flow. The overall mass flow is a single valued function of p21

and increases with decreasing values- of that pressure. This may be seen on
looking at the curve for m, the mass flow ratio, secondary over primary, versus
P21 in Fig. 7. Also shown in Fig. 7 are the curves for the total pressure ratio

Pt Pt, I the energy ratio after mixing, K = 2 M 2 ), and the critical area

ratio, AVA3 , for the case when the total enthalpy ratio, h, is 2.0.

Consider/



Consider the flows given by the solutions shown in Fig. 6. To
illustrate the various flow regimes we will now consider the effect of the back
pressure on the systems represented. When the back pressure is high it is
matched by the exhaust pressure arnd -Kue mixed flow is well subsonic. Both
flows are also injected into the mixing tube at subsonic speeds. This is the
subsonic regime and all such solutions are dependent on the downstream
conditions. Referring to Fig. 6, and selecting a typical value for P3, of,

say, 1.15 Pt2' it will be seen that, at this stage, all the solutions shown
are in the subsonic regime. The boundary between the subsonic and. mixed reimes

takes the form of a line, P21 = constant, since the pressure at which the

primary stream chokes is Cependent only on the total pressure ratio c. In
the case under consideration, the relevant value of p2, is 0.898 Pt2" As

the back pressure is lowered, and the exhaust pressure with it, all the solutions
enter the mixed regime, those of lower total enthalpy leading. While the

solutions are in the subsonic regime both the primary and the secondary mass
flows increase as p2, and p.3 decreases; but in the mixed regime only the

secondary mass flow is affected. The solutions in which P3 = Pt2 zepresent

the special cases for which the secondary reservoir and the exhaust reservoir
may be one and the same. In the mixed regime the primary enters the mixing

duct in an underexpanded state. As the exhaust pressure, py is lowered and

the solution points move to the left down the curves in Fig. 6, the pressure
difference between the streams on injection gets larger, and the solution for
the mixed stream tends towards the sonic state.

Considering in particular the solution for h = 3.0 and 4.0 in Fig.6,
as the exhaust pressure falls below a value of about 0.7 Pt2 the mixed stream

becomes sonic and the system chokes at the exit of the mixing tube. It is
thought that, by itself, further lowering of the back pressure will have no
effect on the solutions and that the exhaust pressure will remain at the sonic
value. Solutions of this type are said to be in the supersonic regime. It
should be noted that thase choked values are also those of maximum total mass
flow and minimum mixed stream total pressure.

As the back pressure is lowered in the solutions for which h = 1.0,
1.5 and 2.0, the flows experience the two stream choking effect before the mixed
flow becomes sonic. On the graphs this effect is shown by the truncation of
the parabolic type curves before their natural minima are reached. The limiting
flows in these cases are maximum mass flows with respect to the primary expansion
as opposed to the mixing process. The two stream choking effect takes place
at the plane of equal static pressures at the end of the primary expansion.
It has been shown (see Ref. 3) that the plane wave velocity is stationary in
both streams at this plane for the condition of maximum mass flow. When the
back pressure falls below the point where this choking takes place, it only
effects the flow downstream of the choked plane. The solution for the mixed
stream in this case is double valued; one solution being subsonic and the other
supersonic. Now, mathematically, the subsonic solution is equivalent to the
supersonic one with a normal shock at the end of the mixing duct. This suggests
that, for the values of the back pressure less than the subsonic l.imit of the
exhaust pressure, P3 the supersonic choked solution is adopted together with an

oblique shock system at the duct exit to match p3 and P As the back

pressure falls the shock system would get weaker and would vanish as the
supersonic value of P3 is approached. Beyond this point the flow would

certainly not be affected and could truly be said to be in the supersonic regime.

As/



-15-

As may be seen from the results presented, all the subsonic solutions and th3
supersonic ones associated with the two stream choking effect result in mixed
stream total pressures in between those of the primary and secondary streams.
They also obey the second law of thermodynamics in that they produce enthropy,

32 Eistence of the supersonic solutions

Now it has been shown that, for each subsonic solution, there exists,
mathematically if not in reality, an alternative solution of identical mass flow.
The flows corresponding to both solutions differ only in the action of the mixing
process and thus in the state of the mixed stream. In most cases the
alternative solution is a supersonic one, but in some cases with high values
of the secondarj injection pressure and low values of the ratio, z, the
alternative sulutions pass through a singular point where the Mach number of
the mixed flow becomes infinite. Points on the other side of this singularity,
that is with even larger velues of p21 , produce alternative solutions with

negative Mach numbers. These solutions are assumed to have no meaning.

Looking at the supersonic solutions, theoretically, as the exhaust
pressure, p 3 falls from its value at the choked condition, the solutions for

the mixed flow tend to become more supersonic and the corresponding values of
the secondary injection pressure start to rise This indicates that both the
total mass flow and the pressure difference between the two streams on injection
will fall. On looking at Fig. 6 it will be seen that the solutions will pass
out of the mixed regime into the subsonic regime if p 3 is allowed to fall far

enough. Two other special points occur in the general solutions as the exhaust
pressure falls. Firstly there comes a point beyond which the total pressure of
the mixed stream becomes larger than that of either of the component streams.
This point we shall call the point of total pressure gain. The other point is
one beyond which the solution no longer obeys the second law of thermodynamics
in that it starts to lose entropy. This will be known as the isentropic point.
The total pressure gain points and the isentropic points are marked by triangles
and circles respectively on the graphs presented Ji this paper. The order in
which these points and the return of the solution into the subsonic regime
occur varies from solution to solution. This is well illustrated in Fig. 6.

"Can any of these supersonic solutions be made to occur physically?"
is the question that must now be asked. In dealing with the subsonic solution
it was natural to assume that they would respond in such a way as to match any
changes in the back pressure. But, as in the case of the ordinary convergent
nozzle, it would also seem natural to assume that further lowering of the back
pressure after the system had already choked would not have any effect, and. that
the system would remain ii, the condition of maximum mass flow even when exhausting
into vacuum. This would almost certainly be so for those solutions that choke
at the end of the mixing process. The case is not quite so clear for those
solutions that choke due to the two stream chokinr effect, but it is assumed that
when the back pressure falls below the value of P3 , corresponding to the

supersonic version of the choked solution, it will no longer influence the
solution.

The conclusion drawn from the above discussion is that the system in
the simple form of a constant area mixing duct exhausting straight into a low
back pressure or vacuum will never produce a solution in which the state of the
mixed flow is more supersonic than that of the maximum flow solution. This
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does not, however, exclude the possibility of obtaining such a solution by
making some modification to the system. It might be an interesting
experiment to try restricting the total mass flow by narrowing down the exit
of the mixing chamber when the ejector is in the choked condition and exhausting
into a very low back pressure. The system will then choke at the throat of
this variable exit nozzle as shown in Fig. 3. On looking at Fig. 7 where a
solution is plotted in terms of the critiaal area ratio AA 3 , after mixing

it will be seen that for a fixed reduction in exit area, that is a fixed value
of A/Ay3 the two alternative solutions have differing values of p21. Thus,

they have different rates of mass flow and it will also be noted that it is
always the supersonic solution that has the greater mass flow.

However, it is not thought that this process is likely to produce a
supersonic solution, for not only would it involve supersonic diffusion but
it also requires the existence of a steady supersonic flow not preceded by a
choked flow. To obtain supersonic flow in a mix-ing region it would be necessary
to choke the flow upstream of that section. In none of the non-maximum flow
solutions does any mechanism occur whereby such choking could take place,

3.3 General surveX of the solution for sonic injection

The numerical investigation of the effects of the control variables
on the solution is carried out for the mixing of two streams of th same prefect
gas. The specific heats of this gas are taken to be constant and their ratio
to be 1.4, the same as that for air. One of the main objects of the

investigation is to determine the effects of varying each of the control
parameters on the way in which the flow chokes. The survey is split into
two principal parts. The first consists of obtaining complete solutions for
flows with fixed upstream stagnation conditions and fixed geometry. In these
solutions the effect of the back pressure is included. Te second part is a
survey of the maximum flow solutions; that is those in the supersonic regime,
where the back pressure has no effect.

3.3.1 The survey of full solutions

In the survey of full solutions, solutions are evaluated over a four-
dimensional field. The total pressure ratio, the total enthalpy ratio and the
geometric ratio form three of these dimensions. The full solutions are
obtained keeping these three fixed and allowing the fourth dimension, the back
pressure, to vary. The ranges within which the various parameters are allowed
to vary are as follows:-

z, the geometric ratio, from 0.2 to 0.8
I, the total pressure ratio, from 1.7 to 2.0
h, the total enthalpy ratio, from i .0 to 4.0

As explained above, it is not possible to select values for the back
pressure directly, so values of the secondary injection pressure, P21) are

selected instead. The procedure of obtaining a full solution is started by

taking a value of p2, just below the secondary total pressure. The problem

is then solved for this and successively lower values of P21 until the supersonic

regime is reached.

The ranges of z and h over which solutions are obtained are
reasonably comprehensive. But, for the total pressure ratio, 7', a fairly
narrow band was chosen, so that it covered the critical value, 1.89 in the case
where y = 1 .4.
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The results were plotted on the P3 " p21  field. The choice of P3

was made because it gave a good illustation of the possible effects of the
fourth control variable, the back pressure, and that of P21 because it gave

a clear view of the double valued nature of the solution. On each solution
the points at which the following effects occurred were marked:-

the choking of the primary stream at the entrance to the
mixing tube,

the choking of the whole flow due to the two stream
choking effect,

the solution becoming isentropic (marked by a circle),

the total pressure of the primary and mixed streams
becoming equal (marked by a triangle),

the flows becoming choked after mixing.

The results were plotted in groups of constant area ratio, z, with each graph
representing the solutions for a particular value of z and two values of h.

It was not found practicable to plot the solutions for all values of h on one
graph because of the overlapping that occurred at high values of p21.

The results of this survey may be seen plottsd on Figs. 8 to 21. The
basic solution for fixed values of z, h and % consists of a parabolic type
curve with a minimum value for p2 1. Each point on the upper branch of the

curve is a subsonic solution corresponding to a specific value of back pressure.
In some solutions the parabolic curve is truncated before the minimum in

is reached. In these cases the flow chokes due to the two stream effect. The
effect of increasing the total pressure ratio it is to move the whole of the
basic curve up to a higher value of p3 and in some cases slightly to the right,

without changing its shape. This increases the minimum value of P21  in those

cases that choke at the end of mixing. The value of p 21  at which the two

stream choking effect occurs rises fairly rapidly with 7., and so a relatively
greater portion of the basic curve is truncated with each increment in 7E. The
point at which the primary stream becomes choked moves even faster to the right
as 7 increases, in fact, for the values of -n above the critical value, the
primary stream is choked for all values of P21 less than Pt2" So the
primary stream choking points may only be marked for subcritical values of 7E.

These two choking effects are independent of the total enthalpy ratio as they
both occur before the mixing process starts.

The general effects of the total enthalpy ratio on the solution may
best be seen by looking at Fig. 6, where the solutions for z = 0.5 and
'A= 1.7 are plotted for the various values of h. The two stream choking
effect and the choking of the primary stream are independent of h, and are
represented by just two lines. The total enthalpy ratio affects the shapes
of the basic solution curves but preserves their parabolic form. For high
values of h the basic curve is a shallow one and has a high minimum value
for P21" As h falls the basic curves elongate in the negative P2 1
direction and lie completely outside curves for higher enthalpy ratios. Thus
the value of p21  at which the mixed stream chokes falls with h until it

reaches the two stream choking limit. Further reduction in the total enthalpy
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ratio causes the two values of P3 at which the two stream choking occurs to

diverge, splitting the solution into two distinct parts, one totally subsonic
and the other totally supersonic. The two halvas lie above and below the
solutions for higher values of h respectively.

Increasing the value of z, that is increasing the primary injection

area, has two main effects. It moves the basic curves up and to the right,
that is, to higher values of both P3 and P210 and it also -increases the value

of p., at which the two stream choking effect occurs, thus decreasing the

possible range of p21" Increasing z also increases the dcmain of the two

stream chokIng effect in the r - h field. Hence some solutions, for certain
values of % and h, that choke at the end of mixing for low values of z,

.ill, for the same values of % and h but higher values of z, choke due
to the two stream effect. These effects are largely due to the relative
reduction in the area available for the primary expansion. The spread in the
basic curves for differant total pressure ratios is more pronounced at high
values of z.

3.3.2 Thb survey of choked solutions

The second part of thia investigation consists of a survey of the
solutions in the supersonic regime. Now these solutions are all independent
of the back pressure and thus the total field of possible solutions may be
represented by a three dimensional field formed by the remaining control
variables. The reduction in the number of control variables allows the problem
to be solved over a wider range of conditions. The ranges within which solutions
were found are as follows:-

z, the geometric ratio, from 0.01 to 0.9
', the total pressure ratio, from 1.1 to 6.0
h, the total enthalpy ratio, from 1.0 to 5.0

As mentioned above, there are two types of solutions in the supersonic regime;
those that choke after mfxing and those that choke before. The boundary between
these two types is the locus of solutions which choke simultarmously in both
modes. This locus forms a surface in the z, 1t, h field which is depicted as
lines of constant z in the c - h field in Fig. 22. It may be seen that
the surface tends towards being plane when it coincides with the line

= h = I. In the domain bounded by the surface and the plane h = I
the solutions choke due to the two stream effect, and., in the domain between the
surface and the plane % - I they choke at the end of mirding.

When the solutions are considered in terms of the state of the mixed
stream, those that choke after mixing are single valued, and those that choke
before are double valued. The state of the mixed stream may be represented by
the exhaust pressure P3. Looking at the solutions for a fixed geometry, they

may be represented by surfaces in the 7, h, P3 field. In fact the complete

solution for a fixed geometry consists of two intersecting surfaces, one
corresponding to each of the choking modes. The surface representing the two
stream choking solution is of a parabolic type, double valued in P3. The

solutions are shown in Figs. 23 to 28 as lines of constant total pressure ratio,
A, forming the surfaces in the 7c, h, P3 field. The intersection of the two

surfaces may be obtained by tracing the locii of the triple points. It will
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be noticed that this line always intersects the h = I plane at the point
= 1, P3 = 0.5283 Pt 2  (critical value for y = 1.4) as could have been

forecast from looking at Fig. 22. The solutiornz that choke after mixing
appear bo be affected only slightly by the value of h, whatever the values of
z and .

It is also of interest to look at the intersection of these solution
surfaces with the plane h = I. These solutions, where both streams have
the same total enthalpy, are depicted in Fig. 27. hr expected, all of these
are double valued in p3 , as they all choke due to the two stream effect.
It will be noticed that the solutions for large primary injection areas (high
values of z) are limited in the size of ti6 total pressure ratio allowed.
This is because these solutions are in the base pressure regime and the
secondary mass flow is reduced to zero. The value of A at which this takes
place is determined by the simple and rather crude process of equating the
pressure, which the primary stream would attain if it expanded isentropically
to fill the whole mixing duct to the total pressure of the secondary., This can
only be said to give a very approximate result as solutions in the base
pressure regime are highly affected by the viscous interaction between the
streams. To o:btain a better result, one would have to resort to a two-
dimensional method such as that of Chow and Addi, Ref. 2.

4. Extension of the Theory for the Case of Supersonic Injection

The theory developed above may be extended to cover certain flow regimes
for supersonic injection. The set up referred to as a supersonic ejector in
this paper is illustrated in Fig. 4a. It consists of two nozzles discharging
into a constant area mixing duct. One of the nozzles is purely convergent
and the other is convergent-divergent. The latter is referred to as the primary
injection nozzle and the stream that passes through it is called the primary
stream. To give an idea of the physical context into which any theory on
supersonic injection must fit a brief description of the various flow regimes
that are found to exist will be given.

Firstly there is the subsonic regime in which both streams are subsonic
throughout the apparatus. The iihjection pressures are equal, the two stagnation
pressures and the back pressure are of the same order, and the whole flow is
dependent on the back pressure against which the system exhausts.

Next there are the mixed regimes. In these regimes the primary stream
is choked at the throat of the primary injection nozzle, but the mixed stream
is subsonic and its mass flow is therefore dependent on the back pressure. The
mixed regime may be sub-divided according to the behaviour of the stream on
entry into the duct. If the primary is overexpanded on entry to the duct, that
is the primary injection pressure is less than the secondary injection pressure,
as in Fig. 4b, then the flow is said to be in the mixed supersaturated regime.
On the other hand, when the secondary injection pressure is less than the
primary and the primary enters the duct in an underexpanded state the flow is
in the mixed supersonic regime as in Fig. 4d. The condition between the two,
when the injection pressures are equal is known as the saturated condition and
is shown in Fig. 4c. In all the mixed regimes the total mass flows are always
back pressure dependent.

There occurs, for any given ejection configuration, a certain limit
in the back pressure below which the whole flow becomes independent of the back
pressure. The regimes of the solution in which this occurs are termed the
supersonic regimes and they are further sub-divided into regimes depending
on the mechanism whereby they choke. It is possible if the enthalpy ratio
between the two streams is very large for the mixed flow to become sonic and
choked at the end of the mixing tube.
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It is not proposed to deal with these cases in detail, in fact it
will be assumed for the puvposes of the following discussion that the total
enthalpy ratios are small enough to avoid this mode of choking. The choking
will therefore take place somewhere near the injection plane with the actual
mechanism depending upon the reaction between the two injected streams.
It is assumed that in general the choking reaction occurs before the flows have
had time to mix appreciably. The sub-division of the supersonic regimes is
the same as that for the mixed. When the primary is overexpanded and the
secondary flow is choked the flow is said to be in the supersonic supersaturated
regime (Fig. hi3). When the primary is underexpanded the regime retains the
name supersonic regime (Fig. 4h). Again there is a condition between the
two in which the injection pressures are equal and this is termed the saturated
supersonic regime (Fig. 4b).

It is in their treatment of the supersonic regime that the various
theories on supersonic ejection differ. It is commonly agreed that the
secondary stream chokes by reaching sonic velocity at the throat of its
injection nozzle in the saturated and supersaturated regimes. However, for
the supersonic regimes where the primary stream expands on entry to the mixing
tube, the secondary contracts on entry and therefore cannot reach sonic velocity
at the throat of its injection nozzle. The choking therefore mast occur in
the mixing tube. There are two main models used to explain the mechanism of
this choking. One assumes that the primary stream goes on expanding until
the secondary stream reaches sonic velocity thus choking itself. The other
assumes that the secondary stream chokes due to the two stream choking effect
before it reaches the sonic velocity. Using either of these models of choking,
there are a number of assumptions or methods of analysis which may be used to
describe the exact mechanism of the choking process. For instance, the streams
may be treated isentropically, or be assumed to behave polytropically, and either
a one-dimensional or two-dimensional method of analysis may be used. To
illustrate some of the combinations already used for supersonic injection a
few examples are given.

Fabril, treating both streams one-dimensionally and isentropically,
assumed that the secondary stream choked by reaching sonic velocity. He
equated the momentum exchange between the streams but not the pressures at the
end of the expansion. Messrs. Chow and Addi2 again treated both streams
isentropically and assumed that choking took place at sonic velocity, but they
treated the primary stream two-dimensionally by the method of characteristics.
They also include the effect of mixing between the streams before choking.
Messrs. Hoge and Segars4 , on the other hand, suggest that the two stream choking
effect might produce a more accurate description, though they compare its
results with those assuming complete mixing and therefore are presumably talking
of reasonably short ejectors. They do not seem to suggest that two stream
choking is a competitor, in the strict sense of this discussion, to the sonic
choking of the secondary stream in ejectors where mixing is assumed to be
complete.

It is the purpose of this section to show that the two strewa choking
concept may well provide a better description of the flow in certain regimes.
As a preliminary to the detailed discussion of the supersonic regime a
description of the performance of a typical supersonic ejector is presented.
The assumptions made are the same as those made earlier in the case of sonic
injection.

Consider a supersonic ejector system with fixed geometry such as that
shown in Fig. 4a. If the stagnation conditions are kept constant upstream,
the performance of the ejector will be a single valued function of the back
pressure into which the ejector exhausts, Let us consider, then, the performance
of the ejector as the back pressure is lowered from a reasonably high value.
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At back pressures somewhat greater than the secondary total pressure,
the ejector will operate in the subsonic regime provided that the total
pressure ratio between the two injected streams is not too great. Here
the flow is subsonic throughout and the injection pressure of the two streams
are equal. If the total pressure ratio, x, is at all high the flow may
never be subsonic throughout and still maintain a positive secondary mass flow.
That is the mixed regime and the base pressure regime overlap to the exclusion
of the subsonic regime. Thus, in general, at the highest back pressures to
give positive secondary flows, ejectors will operate in either the mixed or
subsonic regimes deperding mainly upon the value of the total pressure ratio

For flows in the subsoric regime, upon lowering the back pressure
from this maximum value, the mass flow of both streams will increase until the
primary injection nozzle chokes and the flow enters the mixed regime. Further
lowering of the back pressure results in the formation of a normal shock within
the primary injection nozzle as in the case of the ordinary Laval nozzle. This
shock moves down stream from the throat as the back pressure falls, its exact
location being determined by the equality of the injection pressures. Meanwhile
the lowering of the injection pressures continually increases the secondary
mass flow. Eventually this normal shock will reach the injection plane and
will become' oblique, the injection pressures will no longer be equal and the
primary stream will contract upon injection as shown in Fig. 4b. The mixed
regime flows mentioned so far are all classified in the supersaturated mixed
regime.

Now, at any time during the process just describe!, the secondary
stream will become choked if its injection pressure falls to the critical value.
This is most likely to occur for systems with low values of the total pressure
ratio A . When the secondary stream chokes in this case and the primary stream
is still underexpanded the flow is said to enter the supersaturated supersonic
regime as shown in Fig. 4e.

Considering, however, those oases for which the secondary injection
pressure is still above the critical value, the oblique shock gets weaker as the
back pressure and injection pressures fall. During this process in which the
normal shock becomes an oblique shock and grows gradually weaker, the difference
between the injection pressures and the degree of the primary contraction rise
to a maximum and then fall back to zero as the weak shock vanishes. This last
condition, where the primary stream is neither over nor under-expanded, is
known as the saturated condition and it represents the boundary between the
supersaturatbd mixed regime and the supersonic mixed regime. For certain
solutions it happens that the secondary injection pressure becomes critical
simultaneously with the vanishing of the oblique shock, in which case the flow
is said to choke in the saturated supersonic regime. This case is depicted in
Fig. 4f.

Considering those cases fof which the secondary stream is still unchoked
in the saturated condition, further lowering of the back pressure will reduce
the secondary injection pressure but not that of the primary. Thus the primary
stream will be injected in an underexpanded state. The streams will then
react so as to reduce this pressure difference; that is the primary expands and
the secondary contracts as shown in Fig. 4d. This region of the solution is
called the supersonic mixed regime. As the back pressure falls flows in this
regime choke due to some reactive process between the two streams. Here we
shall assume that this nrocess is the two stream choking effect and that it occurs
at the end of the primary expansion. This event is depicted in Fig. 4h.
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At this stage in a superficial investigation it might be considered
that all the possible configurations of the flows had been discussed. On
closer investigation, however, there appear some flows in the regime of the
solution between the supersaturated supersonic regime and the supersonic regime
which, when two stream choking is assumed, are in need of some explanation.

It may be instructive to look at these solutions in the following way.

Consider, as above, a supersonic ejector of fixed geometry exhausting straight
into a vacuum and thus operating entirely in the supersonic regime. Now
consider the effect of varying the total pressure ratio, . For extremely

high values of c the ejector will be operating in the base pressure regime;
that is there will be no secondary flow. For slightly lower values, the flow
will be in the supersonic regime and the flow will choke due to the two stream
effect. As the total pressure ratio is lowered the degree of primary expansion
will decrease and the plane of two stream choking will approach the injection
plane. When the expansion vanishes, the two streams will be injected at equal
pressures and the choking effect will take place immediately. In this case the

secondary injection pressure is well above the critical value. Now, if we are
altering the value of A by alter. ng the primary total pressure and keeping that
of the secondary constant, we may identify a particular value of the primary
total pressure, say P , with the vanishing of the primary expansion.

Now, if the problem is also tackled from the other and, that is
starting with low values of 7 and then increasing them, it may be seen that
the primary will start by being highly overexpanded, and the secondary, being
choked at the injection plane, will expand considerably on entering the duct.
As the value of A is increased or as the primary total pressure is increased,
the primary injection pressure will also increase, eventually rising to the same
level as the secondary injecticn pressure, which in this case is the critical

pressure since the secondary stream is injected sonically. Again we may
associate a particular value of primary total pressure with the equality of
the injection pressures. This value, P", is different to P1, mentioned

above, and the common value of the injection pressures is also different co that
associated with Pt.  In the first case the secondary injection pressure is that

t.
associated with two stream choking and is therefore subsonic, but in the second
case it corresponds to the critical or sonic value. There thus emerges a region
within the supersonic regime bounded by the two values of the primary total
pressures P' and P" at which the injection pressures become equal. This

t t
region we shall refer to as the saturated supersonic regime.

The area of the solution involved is shown in Fig. 30, where the values
of the total pressure ratio %. corresponding to P' and are plotted againstt
the primary injection Mach number and the geometric parameter z. z in this
case is the ratio of the area of the primary throat to that of the mixing tube.
Now the solutions for the sonic choking of the secondary injection nozzle are
independent of z. Hence the solutions corresponding to P" may be depicted

as a single curve in Fig. 30 (the curve nearest the IMi axis). The two stream

choking solutions, on the other hand, are functions of z and are therefore
represented by a set of curves, forming a surface in the %, z, M i field.

The solutions for high values of z are shown to intersect with the base
pressure regime, as the mass flow of the secondary stream tends to zero. Thus
it may be seen that solutions defined by points within the volume bounded by
tho surfaces of Fit. 30 will choke in the saturated supersonic regime. Those
contained between the plane t = C and the surface corresponding to Pt
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choke in the supersaturated supersonic regime. Solutions corresponding to
the supersonic regime are contained in the volume bounded by the P' surface

and the base pressure surface.

Assuming the theories proposed above for the supersonic and
supersaturated supersonic regimes are applicable up to the boundaries corresponding
to and P" respectively, there remains a need to produce a theory to cover

solutions in the saturated supersonic regime, between P' and P". Two main

possibilities emerge that seem to merit discussion, firstly there could occur a
discontinuity in the secondary mass flow as the two stream choking process
vanishes, and both flows could accelerate until the secondary chokes at sonic
velocity. Or secondly both streams could decelerate, the primary via an
oblique shock, and the secondary would choke due to the two stream effect. Both
possibilities will now be discussed in full with reference to Fig. 5, where the
solutions they indicate are sketched. Fig. 5 consists of a plot of the
secondary injection Mach number plotted against the ratio of the secondary
injection pressure p21 to the primary total pressure Ptl. The curve AB

represents the two stream choking solution for the supersonic regime, and the
* point B, corresponding to the primary total pressure P', is on the line of

equal injection pressures. The supersaturated supersonic regime is represented
by the line DF, D being the boundary point with the saturated supersonic
regime.

Consider firstly the sonic choking theory. In this case, as the
primary total pressure decreases past the value P' the two stream choking

t
process vanishes and t-he secondary mass flow is suddenly allowed to increase so
that the secondary i: jection pressure suddenly drops. This discontinuity
occurs at a particular value of total pressure ratio and therefore may be
represented on Fig. 5 as a line of constant total pressure ratio, say BC.
The primary stream then expands until it chokes the secondary. It is this
choking process that now governs the secondary injection pressure, thus defining
the point C. As the total pressure ratio is lowered the degree of primary
expansion decreases and when eventually it vanishes the secondary stream chokes
at the plane of injection. This solution is represented by the curve BCD
in Fig. 5.

Alternatively, there is the two stream choking theory. As the
primary total pressure falls below the value Pt, this theory requires no

discontinuity in the secondary mass flow but it does require the primary stream
to contract when its injection pressure is higher than that of the secondary.
The most likely possibility is for the primary to pass through an oblique
shock system and this would allow the secondary stream room to expand subsonically
until the two stream choking effect occurs. This solution forms a natural
extension to the curve AB in Fig. 5 and extends up to meet the extension of
the line FD at E where the secondary chokes in the plane of injection.
The solution follows the curve BE as the total pressure ratio decreases from
P'. The degree of the primary contraction and the strength of the oblique
t.

shock increase until the point E is reached whereupon they both start to
subside again as the curve ED is traversed. At D the shock and contraction
have both vanished and the injection pressures are again equal.

Two theories have been presented to cover the flow in the saturated
supersonic regime. Which, if either, will give an accurate description of the
flow within this region of the solution is not known at present. The few odd
experimental points that have been published f-r this regime seem to favour
the two stream choking explanation, but it is not really possible to come to
any definite conclusions without carrying out specific experiments designed
especially for the purpose.
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5. Conclusion

An attempt has been made to find an improved one-dimensional theory
to predict the performance of constant area ejectors with convergent injection
nozzles. Theories for the operation of such ejectors in the subsonic, mixed
and supersonic regimes have been presented. They are all based on the
assumption that the flows may be divided up into specifio regions in which
the processes of mixing and pressure adjustment may take place separately. The1theory covering the supersonic regime assumes that only two modes of choking
occur, one at the exit of the mixing duct and the other due to the interaction
of the two injected streams when injected at different static pressures. The
domains over which each mode is active have been outlined. The two stream
choking effect is assumed to take place at the end of the primary expansion.
It may be possible, however, that such an effect takes place during thE mixing
process, thus providing a gradubl transition between the two extreme causes of
choking assumed in the theory above. The theory is not applicable to the base
pressure solutions; that is those with zero or near zero secondary mass flows.
To obtain satisfactory solutions in this regime it is considered necessary to
adopt to two-dimensional approach that takes into account the viscous interaction
between the two streams.

From the discussion of the supersonic solutions it is concluded that
the ones that are most likely to exist physically arc those corresponding to
maximum mass flow aolutions in which the system chokes due to the two stream
effect. All other solutions will remain at maximum flow conditions in which
the mixed stream becomes choked. Hence it is also concluded that the total
pressure of the mixed stream always lies between those of the two injected
streams. All such solutions are found to be irreversible, that is they produce
entropy.

It has been shown how these theories may be adapted to include supersonic
injection and the mixing of different gases. In the case of supersonic injection
it is found that the two stream choking effect is applicable to those flows in
which the primary stream is injected in an underexpanded state.

The results predicted by this approach have not yet been compared fully
with any experimental work. This is mainly due to the lack Of any published
results of a suitably comprehensive nature. The author, at the time of writing,
is about to embark on an experimental programme.

References/
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Appendix I

Derivation of the Mass Flow Density and. Momentum Flow Functions

The mass flow, i, of a perfoct gas flowing steadily past a certain
cross-section in a duct, is given c':-dimensionally by the following expression-

= A p v where A is the du-t cross-section,
p Is the density of the gas,

and v the velocity of the gas.

Introducing the perfect gas law,

p = p R T where p is the pressure,
R the gas constant,

and T the temperature,

and using the normal isentropic relations the expression for the mass flow may
be rewritten,

A;PtaM/(RT)

APt 1 2 y (I - ;(Y 1)/y) i/y

RT y-1

where N is the Mach number,
Tt the total temperature,

Pt the total pressure,
y the ratio of the specifc heats,

p
w the isentropic pressure ratio -

Pt

Now if we define the mass flow density function y as the function (I -----

yof , we see that the mass flow may be written:-

m = - . y (W)
V Tt R(y - 1)

Similarly the enery flow may be written,

• t F 2y

Cp T t = T t Cp *. y (i).
SR(y - i)

The/
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The momentum flow, i, is given by,

M = A(p+p .v

This may also be written in terms of the stagnation conditions and a single
property which in this case we shall call the momentum flow function f(F).

Id = A(p + p v2 ) ,

Y + + p2) ,

A yt -t ( y _( Iy/ )= APt.- w ) - ,

y- t y+l

y +1

A = AP + f(;),
t y- 1

where f(;), the momentum function, is defined as:

( )~ ~ 2 ; -- (I -)/ .
\y +

Appendix IV,
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Appendix II

Extension of Theory to 'he Case of Mixina Two Different Gases

The theory developed above is also applicable when the compositions of
the two streams are not the same. However the equations presented with this
theory have to be rewritten in a more general form in order to take into
account the differences in properties. Each stream will have its own values
of gas constant, R, and ratio of specific heats, y. The values of these
constants for the mixed stream will depend upon the ratio of the primary and
secondary mass flows and thus may only be determined when these are already
known. The mass flow density and momentum flow functions must be redefined
as functions the two variables w and y.

The mass flow past a cross-section now becanes,

APt (R Tt) y(;, y).

where y(;, y) = (1 - ) '

Similarly the energr flow,

= A Cp (Tt/R)2 y (i, ).

and the momentum flow,

= A P t f(w, y).

where f is redefined as

If the mass flows of the primary and secondary streams are mI and m2
respectively, the gas constant R3 for the mixed stream will be given by:-

R3=m, R, + m 2R 2
R3 = i 2

ie + m2

The ratio of' the specific heats 73for the mixed stream will be given by

m1 CP + m2 Cp2
Y3

m, Cv, + m2 Cv2

To/
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To illustrate how the equations may be modified an example will be
given. Consider Eqn. (9a) from section 2.2. This states that the mass flow
of the mixed stream must be equal to the combi-ned mass flows of 'the primary
and secondary streams. It will now have to be written,

Y( r ) I+zIt I r

22Y 2) + z" ' (r h)- y(w1 2 ,Y1 ) = (1 + z") " (re h3 )-2 Y(W33 ,Y3).

R ~ Mr + m 2where r = i/R and r
i/2  adre

m, +m2

Having rewritten Eqns. (7c), (8c), (10a), (11a), etc., in a similar
manner the same method of solution as outlined above in section 2.3 may be used
to find the state of the mixed stream.

NH
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_Fiure 5. The Supersonic R.egimes for a Fixed Geometry.

Secondary injection Mach number v. Secondary injection pressure/
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Figures 6 to 21.

Full Solutions For Sonic Injection.

In Figures 6 to 21 a series of full solutions for sonic
injection constant area mixing is given. Each curve represents
the performance of an ejector oF Fixed geometry and Fixed
upstream stagnation conditions. Different points on the same
cuive correspond tc different mass flows and diFFerent exhaust
pressures. The solutions are plotted in the P - P field. P'
is the secondary injection pressure and it is2 his ressure t t
determines the mass Flows within the system. P3 is the exhaust

pressure at the exit of the mixing tube. In the subsonic solut-
ions P3 is also equal to the back pressure into which the
ejector exhausts. Both P and P2 1 are normalised by dividing
them by the secondary toial pressure. Poirts,on the supersonic
branches of the solutioni,beyond which there is a loss of entropy
are marked thus o and those beyond which there is a gain in
tctal pressure are marked thus a . The general Form oF a
typical solution curve is shown in the figure below.
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Figure 22.

9oundar~y between Choking Eff'ects in the Sup ersonic Reg ime.

PresSUre 6.0.)..
Ratio

0.3

0.7

1.0 2 . 3.0 4.0 5.0C h-

Totz~l
En Lh,:1, y

The domains of the thrcu d!fimensicflA control -. railleter
fielcl,IT - z - h, w) thmin which~ the sycter chok's duse to the
choking or the mixed stream crod (hlie tr I he twv Li ct:'-i rok irg
effect arc divided by a burface containingq thc-se CO1~tIonO-
that choke due to both cf"tLcts sirrutvncously . This vurface is
shown in the figure above ploittedi as lines9 of ccn,.tzr't z in
the Tr - h field.

Boundary between Choking effects In the supersonic regime.
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Figures 23 to 28.

In these figures the Supersonic Regime soluticns are
plotted as surfaces in the three dimensinal IT - h - P3 field.

Each fi.ure represents a particular geometry or value of z.
The solutions double valued in P are those corresponding to3
two stream chckin. The upper branches of these solutions are
subsonic solutions and the lower branches supersonic. The
surfeces ere represented by lines of constant total preqq.re
ratic,sT, in the h - P, field.

Figure 27.

-ontotric retio z = 0.01.

Total pres-ure ratios Tr , from the insjde out, I.1,1.3,1.7,

2.5,2.0,4. , 6.0.

Ex'haust
Pressure

P3,/Pe T

1.04

(11. G-

C' .2

0.0

1.0 2.0! '.() 4.P 5.0 hI

Total

Enthalpy
RpItio.

Solutions in the supersonic regime for sonic injection.
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rigure 24. 'eon'etric ratio z =0.1

P 3/T'ot at
P re.s suire

Exhaust Ret... ..... 0.

Pressure 1.2.. 
,

0..0

10

U2.5

0.2

1.0 *2 0 . . .

Totel Enthalpy :,Pfio

Figure 25. Geome'tric ratio z 0.3

Pressure R

1.0 20 3.C'~.fl6.0
Total nthelp !6.0

1.6~~ f tesproi rgm o O~Cijcin

2.5
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Figure 26,.

Geometric Ratio z 0.5

p Total3/ % Pressure

3.0 Ratio
........ ....

Exhaust ..................
Pressure .. .........2.8 .. .... 6.0.......................

.0

2.6 
3.0
2.5

2.4 
2.1.
1.9.
1.7

2.2 ... 1.3

...........
2.0 ....... -- ........... ................ ...........

.......... .. ............
......... ... .................. ............

............

1.6
............
............
.............

1.4

................. ........ ................. .......... .... ............
1.2 ... ......................................... .......

.. ... .... ......
...... ....... ............. ........... . ......... ...

.... ....... .........................0.8

0.6 .....

0.4
..........................

0.2

0.0
1.0 2.0 3.0 4.0 5.0 h

Total Enthalpy Patio

Solutions in the supersonic regime for sonIc injection.
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renetric ratio z 0.7

Exhaust 2.b

Pressure II

2..4

2 2

2.0

1.6

1 .4..............

1.2

1.0

C0.6

0.4

0.0

Total Enthalpy Patin,

Solutions in the-super sonic.. regime for sonic injection.
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Georiet ric ratio z 0.9

Pressurresur

0.2

2 .0 2 .. 3.... .0 . 5.

Total...th.....Rati

Soluion inthesupesonc rgwi~ to soic njei2.5

I.B .. 1[
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Fiue 9 Choked Solutions for Total Enthalpy- Ratio of Unity.

P G eometricT

z
Exhaust..
Pressure 2.~ Base Pressure Solutions

---A - -~
2.4 ...

2.2

2.0

........ 0.5

1.6

1.4

1.2...

0.86.

0.6 0.01

0.4

0.2

0.0 --

Tctal Pressure Ratio

The maximum flow solutions, for the system ir~ which the totr.l
enthalpies of the two strearns are th-e same, for - two surfaces
in the three dimensional z-ir -P 3field. in the figjure above
these surfaces are shown as lirps ronst.z~nt z in theWr-V Field.
The upper surface contains the subsonic solutions and Ole
lower the supersonic SOlLtions. The mixed N'ow will only rhoke
in the special case whenr = i. For high ValuOs Of 7 and V, the
solution enters the Rase Pressure Regime. This is shewn by
truncating the curves at the appropriate value ofir.

Choked So'utions for total tnthalpy ratio of unity.



29341 FIG. 30
Figure 30 is 3 plan view of the three dimensional space

formed by the control parameters 11II I and z, projected onto the
plane z = 0. The z axia thus may be coneide'ed to be normal to the
plane of the paper. Three surfaces are depicted; two of theserthe
P" surface and the Base Pressure surface,are independent of z and
thus may be generated by lines normal to the papsr.Their projections
on the plane z = 0 are therefore single curves. The Ps surface,
however,is represented by a series of curves forming constant z
contours. This surface lies between the other two,intorsecting
with the P" surfacf, along the common curve z = 0. Each point in
the space corresponds to a particular ejector system operating at
a apecific total pressure ratio. The surfaces depicted divide the
space into four separate volumes each representing a specific flow
regime. Thn mcde in which any particular ejector system will choke
may be determined by finding in which volume the corresponding
point lies. The volume between the plane fl = I and the P" surface

t
represents the Supersaturated Supersonic Regime. The volume
between the plane M.. = 1 and the Base Pressure surface contains
the Base Pressure so utions. The vclume between the P9 surface
and the Base Pressure surface is divided into two by the PI surface;
the part below the P surface corresponds to the Supersonic Regime
and the part above to the Saturated Supersonic Regimo.

IM
* Supseat.Sup.Re.

.0

E

0

= S~at&Supo a

2

2

~Base Pressure Surface

.2

L iO 2.0 3.0 4.0 5.0 6 .0 7

Total Pressure Ratio.

Boundaries of the supersonic regime tcr supersonic

Injection.


